
ture diffusivity of heatproof materials in a wide range of temperatures and pressures of the 
gaseous medium indicate the correctness of the proposed mechanism. 
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A METHOD OF MEASURING HEAT CONDUCTION IN A QUASISTEADY MODE WITH ASYmmETRIC BOUNDARY 

CONDITIONS AND WITH ALLOWANCE FOR NONLINEARITY 

I. G. Meerovich and L. I. Zaichik UDC 536.2.083 

The allowance for the dependence of the coefficient of thermal conductivity on the 
temperature and the accuracy of maintenance of the boundary condition in the abso- 
lute method of measurement of heat conduction in a quasisteady mode with asymmet- 
ric coundary conditions is analyzed by the methods of perturbation theory (itera- 
tion method). 

The use of the relationships of a quasisteady mode with asymmetric boundary conditions 
[i] to determine the coefficient of thermal conductivity was evidently done most successively 
by Kaganer in measuring the properties of vacuum-shield insulation [2]. In his method a 
linear (or close to it) temperature rise was created at one boundary of the test specimen, 
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while at the other boundary the heat flux was measured from the amount of cryogenic liquid 
evaporated. The coefficient of thermal conductivity was found as the ratio of the time de- 
rivative of the flux at the cold boundary to the rate of temperature rise at the hot boundary 
multiplied by the thickness of the specimen (absolute method of measurement). 

In methods based on the relationships of a quasisteady mode with asymmetric boundary 
conditions it is particularly essential to allow for the dependence of the thermophysical 
parameters on the temperature, since the temperature difference over the thickness of the 
specimen may reach hundreds or even thousands of degrees by the end of the experiment. In 
this connection the introduction of corrections to the calculating equation and the determina- 
tion of the allowable specimen thicknesses, rate of temperature rise, etc., are necessary 
in the development of methods. In the general formulation this problem is extremely compli- 
cated. 

The allowance for the variation of the coefficient of thermal conductivity in the ab- 
solute method of measurement with a constant heat capacity is analyzed in the present report. 
Such a task is particularly necessary when studying the properties of vacuum-shield insula- 
tion, the heat capacity of which varies slightly while the effective thermal conductivity 
due to internal radiation can vary by an order of magnitude. At the same time we consider 
the allowance for nonlinearity in the maintenance of the boundary condition. 

For the analysis of this problem we first consider the solution of the nonlinear equa- 
tion of heat conduction with a constant heat capacity and a linear temperature dependence 
of the coefficient of thermal conductivity. In dimensionless form the equation of heat con- 
duction and the boundary conditions have the form 

OT OT [ OT ] 
OFo OX ( 1 + a T ) ~ -  ; (1) 

Fo  = )~~ �9 ) ~ ~ ) ~ o ( 1 - - b T ) ;  X - ~  x . 
h2c9 h 

T=O X=O; T = f (Fo) X = I. 
(2) 

We will seek the solution of (I), (2) by the iteration method. As the first step we inte- 
grate Eq. (i) without the left-hand term; i.e., we find the steady solution corresponding 
to the conditions (2): 

( l+bT 0 0 T 1  - -C  j; 
OX 

bf2 (3) T~ } bT'~2 -- C~X-- C2; Co=O; C ~ = f + ~  ; 

bT~ / f l bf2 ) 

We note in passing that the constant C~ when multiplied by %o/h is the heat fluxthrough the 
system in the steady state. Solving the quadratic equation for T~ and substituting it into 
(I), we find the expression for the temperature field in the second step: 

T2 __ l 2 b[ 2 + + bff' 
b + + - ~ -  X ,f ! 2 362/f+_. bf2~ • 

) 2 

b2pX (3 + Of) .(4) 
'2 

A solution by the iteration method is valid for small values of the criterion of temperature 
instability, i.e., when the following relation occurs: 
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f' h2cv 
= ~ 1. (5 )  

fs (l + bt) 

A characteristic feature of the absolute method of measurement of the coefficient of 
thermal conductivity under consideration is the fact that the calculating equation includes, 
among the other parameters, only one quantity determined by the dependence % = k(T), namely, 
dq(0)/dFo at X = 0. We differentiate Eq. (4) with respect to the coordinate and time and 
find the time derivative of the flux at the cold boundary: 

dFo h 6 1 +  6 1T  

An a n a l y s i s  of (6) shows t h a t  in  the  approximat ion  under c o n s i d e r a t i o n  the t o t a l  expres -  
s ion  for the derivative of the flux can be divided into three parts. The first of them cor- 
responds to the derivative for the steady-state expression for the flux if in place of the 
constant temperatures at the boundary one substitutes a given variable value. This expres- 
sion is the time derivative of the so-called transit flux (see [i]) but with allowance for 
the temperature dependence of the coefficient of thermal conductivity. The second and third 
parts characterize the effect of the unsteadiness of the process, also with allowance for 
the temperature dependence of the thermal conductivity, with the third part, characterizing 
the effect of the nonlinearity of the boundary condition, being reduced to zero for a linear 
time dependence of the temperature at the boundary. 

An analysis shows that the fulfillment of the condition (5) leads to the fact that the 
second and third terms can be neglected. 

The form of representation of Eq. (6) also does not contradict the physical meaning. In 
fact, if-one imagines that some system with a variable coefficient of thermal conductivity 
is in a steady state in the presence of a temperature gradient and then one imposes on it a 
small perturbation -- a slight change in temperature at one boundary with a constant tempera- 
ture maintained at the other -- then this small perturbation also makes a small contribution 
to the initial temperature field and flux field, i.e., to the steady-state fields with allow- 
ance for the temperature dependence of the coefficient of thermal conductivity. 

A linear temperature dependence of the coefficient of thermal conductivity is inadequate 
for the analysis of real systems, but the use of the iteration method for the solution of a 
nonlinear equation of heat conduction even for a quadratic representation of ~ = k(T) en- 
counters serious mathematical difficulties: Already in the first step in the determination 
of the temperature T~ it is necessary to solve a cubic equation. However, the analysis con- 
ducted above allows one to avoid these difficulties. In fact, since the contribution to the 
time derivative of the flux at the cold boundary is insignificant when the condition (5) is 
observed and it is neglected in the development of the method, we will consider only the ex- 
pression for the transit flux with allowance for the temperature dependenceof thecoefficient 
of thermal conductivity. Its expression for quadratic, cubic, and other representations of 

= %(T) can easily be obtained from (3). Then after the dependence dq(0)/dFo is obtained 
with a given condition T = f(Fo) at the boundary the analysis of the experiment comes down 
to the choice of the required number of experimental values from the curves obtained and 
treatment by the method presented in [3], i.e, the solution of the system of equations for 
the determination of the coefficients as a function of ~ = %(T). 

An analysis of various specimens of materials and of experiments shows that the conditions 
of smallness of the parameter e is not a rigid condition. 
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